The effect of increased genioglossus activity and end-expiratory lung volume on pharyngeal collapse.
نویسندگان
چکیده
Increasing either genioglossus muscle activity (GG) or end-expiratory lung volume (EELV) improves airway patency but not sufficiently for adequate treatment of obstructive sleep apnea (OSA) in most patients. The mechanisms by which these variables alter airway collapsibility likely differ, with increased GG causing airway dilation, whereas increased EELV may stiffen the airway walls through caudal traction. We sought to determine whether the airway stabilizing effect of GG activation is enhanced when EELV is increased. To investigate this aim, 15 continuous positive airway pressure (CPAP)-treated OSA patients were instrumented with an epiglottic catheter, intramuscular GG-EMG electrodes, magnetometers, and a nasal mask/pneumotachograph. Subjects slept supine in a sealed, head-out plastic chamber in which the extra-thoracic pressure could be lowered (to raise EELV) while on nasal CPAP with a variable deadspace to allow CO(2) stimulation (and GG activation). The pharyngeal critical closing pressure (P(CRIT)) was measured by sudden reduction of CPAP for three to five breaths each minute during non-rapid eye movement (NREM) sleep in 4 conditions: a) baseline, b) 500 ml increased EELV, c) 50% increased GG, and d) conditions b and c combined. P(CRIT) was found to be reduced from 2.2 + or - 0.7 cmH(2)O at baseline to -1.0 + or - 0.5 with increased EELV, 0.6 + or - 0.7 with increased GG and -1.6 + or - 0.7 when both variables were raised (P < 0.001). The slope of the P(CRIT) curves remained unchanged in all conditions (P = 0.05). However, the CPAP level at which flow limitation developed was lower in both increased EELV conditions (P = 0.001). These findings indicate that while both increased GG and EELV improve airway collapsibility, the combination of both variables has little additional effect over increasing EELV alone.
منابع مشابه
Application of negative expiratory pressure during expiration and activity of genioglossus in humans.
The application of negative expiratory pressure (NEP) at end expiration has been shown to cause reflex-mediated activation of the genioglossus muscle in awake humans. To test whether a reflex contraction of pharyngeal dilator muscles also occurs in response to NEP applied in early expiration, the effect on genioglossus muscle reflex activity of NEP pulses of 500 ms, given 0.2 s after the onset ...
متن کاملNeostigmine/glycopyrrolate administered after recovery from neuromuscular block increases upper airway collapsibility by decreasing genioglossus muscle activity in response to negative pharyngeal pressure.
BACKGROUND Reversal of residual neuromuscular blockade by acetylcholinesterase inhibitors (e.g., neostigmine) improves respiratory function. However, neostigmine may also impair muscle strength. We hypothesized that neostigmine administered after recovery of the train-of-four (TOF) ratio impairs upper airway integrity and genioglossus muscle function. METHODS We measured, in 10 healthy male v...
متن کاملInvited editorial on "Lung volume and upper airway collapsibility: what does it tell us about pathogenic mechanisms?".
THE PHARYNGEAL AIRWAY IS A complicated structure combining soft tissue and boney elements that make it prone to collapse when neuromuscular activity wanes during sleep. Anatomic structures form a pliable conduit capable of changing airway patency dynamically to support its respiratory, alimentary, and vocal functions. Respiratory function is supported by active neuromuscular and passive structu...
متن کاملTonic and phasic respiratory drives to human genioglossus motoneurons during breathing.
A tongue muscle, the genioglossus (GG), is important in maintaining pharyngeal airway patency. Previous recordings of multiunit electromyogram (EMG) suggest it is activated during inspiration in humans with some tonic activity in expiration. We recorded from populations of single motor units in GG in seven subjects during quiet breathing when awake. Ultrasonography assisted electrode placement....
متن کاملExpiratory and Inspiratory Positive Airway Pressures in Obstructive Sleep Apnea: How Much Pressure is Necessary? A Different Point of View
The pathophysiology of obstructive sleep apnea can be explained by collapse of upper airways secondary to the negative intra-pharyngeal pressure that develops during inspiration [4]. In addition, during sleep, muscles in the mouth relax and tongue and other structures tend to fall toward the back of the mouth causing crowding in the upper airway region with more potential for upper airway obstr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 109 2 شماره
صفحات -
تاریخ انتشار 2010